use ActiveState; use AppState; use common::{Point2D, Radians}; use core::app::StateChange; use core::controller::Controller; use core::controller::ControllerManager; use core::level::{Level, LevelGenerator}; use core::render::Renderer; use point; use sdl2::event::Event; use sdl2::joystick::PowerLevel; use sdl2::keyboard::Keycode; use sdl2::rect::Rect; use sprites::SpriteManager; use std::cell::RefCell; use std::rc::Rc; use time::Duration; ////////// GAMESTATE /////////////////////////////////////////////////////////// #[derive(Default)] pub struct GameState { world: World, lvlgen: LevelGenerator, } impl GameState { pub fn new() -> Self { let lvlgen = LevelGenerator::new(0, 5); GameState { world: World::new(lvlgen.generate()), lvlgen, } } } impl AppState for GameState { fn enter(&mut self, ctrl_man: &ControllerManager) { for (_k, v) in ctrl_man.controllers.iter() { self.world.add(Box::new(Character::new(v.clone()))); } } fn leave(&mut self) {} fn update(&mut self, dt: Duration) -> Option { self.world.update(dt); None } fn render(&mut self, renderer: &mut Renderer, sprites: &SpriteManager) { self.world.render(renderer, sprites); } fn handle_event(&mut self, event: Event) -> Option { match event { Event::KeyDown { keycode: Some(Keycode::Escape), .. } => { return Some(StateChange::Pop) } Event::KeyDown { keycode: Some(Keycode::Return), .. } => { return Some(StateChange::Push(Box::new(ActiveState::new((800, 600))))) } Event::KeyDown { keycode: Some(Keycode::Space), .. } => { self.lvlgen.seed = std::time::UNIX_EPOCH.elapsed().unwrap().as_secs() as u32; self.world.level = self.lvlgen.generate(); } Event::KeyDown { keycode: Some(Keycode::KpPlus), .. } => { self.lvlgen.iterations += 1; println!("{} iteration(s) of cellular automata", self.lvlgen.iterations); self.world.level = self.lvlgen.generate(); } Event::KeyDown { keycode: Some(Keycode::KpMinus), .. } => { self.lvlgen.iterations = 1.max(self.lvlgen.iterations - 1); println!("{} iteration(s) of cellular automata", self.lvlgen.iterations); self.world.level = self.lvlgen.generate(); } _ => {} } None } } ////////// WORLD /////////////////////////////////////////////////////////////// #[derive(Default)] pub struct World { level: Level, objects: Objects, } impl World { pub fn new(level: Level) -> Self { World { level, ..Default::default() } } pub fn update(&mut self, dt: Duration) { let mut breeding_ground = vec!(); for i in (0..self.objects.len()).rev() { if self.objects[i].update(&mut breeding_ground, &self.level, dt) == Dead { self.objects.remove(i); // swap_remove is more efficient, but changes the order of the array } } for o in breeding_ground { self.add(o); } println!("\x1b[Kobject count: {}\x1b[1A", self.objects.len()); // clear line, print, move cursor up } pub fn render(&mut self, renderer: &mut Renderer, sprites: &SpriteManager) { self.level.render(renderer, sprites); for o in &mut self.objects { o.render(renderer, sprites); } } pub fn add(&mut self, object: Box) { self.objects.push(object); } } ////////// OBJECT ////////////////////////////////////////////////////////////// type Objects = Vec>; pub trait Object { fn update(&mut self, objects: &mut Objects, lvl: &Level, dt: Duration) -> ObjectState; fn render(&self, _renderer: &mut Renderer, _sprites: &SpriteManager) {} } #[derive(PartialEq)] pub enum ObjectState { Alive, Dead } use self::ObjectState::*; pub trait Physical {} pub trait Drawable {} ////////// CHARACTER /////////////////////////////////////////////////////////// pub struct Character { ctrl: Rc>, pos: Point2D, vel: Point2D, } impl Character { pub fn new(ctrl: Rc>) -> Self { Character { ctrl, pos: point!(300.0, 300.0), vel: point!(0.0, 0.0), } } } impl Object for Character { fn update(&mut self, objects: &mut Objects, lvl: &Level, dt: Duration) -> ObjectState { let ctrl = self.ctrl.borrow(); let x = (self.pos.x / lvl.grid.cell_size as f64).min(lvl.grid.width as f64 - 1.0).max(0.0) as usize; let y = (self.pos.y / lvl.grid.cell_size as f64).min(lvl.grid.height as f64 - 1.0).max(0.0) as usize; self.vel += lvl.gravity; if lvl.grid.cells[x][y] { if self.vel.y > 0.0 && !(ctrl.mov.down() && ctrl.jump.is_pressed) { self.vel.y = 0.0; self.vel.x *= 0.9; self.pos.y -= 1.0; } if !ctrl.mov.down() { if ctrl.jump.is_pressed && !ctrl.jump.was_pressed { self.vel.y = -5.0; } } } self.pos += self.vel; if ctrl.shoot.is_pressed { use rand::distributions::{Distribution, Normal}; let normal = Normal::new(0.0, 0.1); let direction = if ctrl.aim.to_point().length() > 0.1 { ctrl.aim.to_point() } else { ctrl.mov.to_point() }; for _i in 0..100 { objects.push(Box::new(Boll { pos: self.pos, vel: direction * (10.0 + rand::random::()) + point!(normal.sample(&mut rand::thread_rng()), normal.sample(&mut rand::thread_rng())) + self.vel, bounces: 2, })); } ctrl.rumble(1.0, dt); self.vel -= direction * 0.1; } if ctrl.start.is_pressed && !ctrl.start.was_pressed { match ctrl.device.power_level() { Ok(PowerLevel::Unknown) => { println!("power level unknown"); } Ok(PowerLevel::Empty) => { println!("power level empty"); } Ok(PowerLevel::Low) => { println!("power level low"); } Ok(PowerLevel::Medium) => { println!("power level medium"); } Ok(PowerLevel::Full) => { println!("power level full"); } Ok(PowerLevel::Wired) => { println!("power level wired"); } Err(_) => {} }; } match ctrl.mov.x { v if v < -0.9 && self.vel.x > -5.0 => { self.vel.x -= 0.5 } v if v > 0.9 && self.vel.x < 5.0 => { self.vel.x += 0.5 } _ => {} } Alive } fn render(&self, renderer: &mut Renderer, sprites: &SpriteManager) { let block = sprites.get("mario"); let size = 32; renderer.blit(block, None, Rect::new(self.pos.x as i32 - size as i32 / 2, self.pos.y as i32 - size as i32, size, size)); let ctrl = &self.ctrl.borrow(); let l = 300.0; let pos = (self.pos.x as i32, self.pos.y as i32); // // axis values // let p = (self.pos + ctrl.aim.to_axis_point() * l).to_i32().into(); // renderer.draw_line(pos, p, (0, 255, 0)); // draw_cross(renderer, p); // values limited to unit vector let p = (self.pos + ctrl.aim.to_point() * l).to_i32().into(); renderer.draw_line(pos, p, (255, 0, 0)); draw_cross(renderer, p); let p = (self.pos + ctrl.mov.to_point() * l).to_i32().into(); renderer.draw_line(pos, p, (0, 255, 0)); draw_cross(renderer, p); // // circle values // let p = (self.pos + Point2D::from(ctrl.aim.a) * l).to_i32().into(); // renderer.draw_line(pos, p, (0, 0, 255)); // draw_cross(renderer, p); } } fn draw_cross(renderer: &mut Renderer, p: (i32, i32)) { renderer.canvas().draw_line((p.0 - 5, p.1), (p.0 + 5, p.1)).unwrap(); renderer.canvas().draw_line((p.0, p.1 - 5), (p.0, p.1 + 5)).unwrap(); } ////////// BOLL //////////////////////////////////////////////////////////////// pub struct Boll { pos: Point2D, vel: Point2D, bounces: u8, } impl Object for Boll { fn update(&mut self, objects: &mut Objects, lvl: &Level, _dt: Duration) -> ObjectState { self.vel += lvl.gravity; self.pos += self.vel; let x = (self.pos.x / lvl.grid.cell_size as f64).min(lvl.grid.width as f64 - 1.0).max(0.0) as usize; let y = (self.pos.y / lvl.grid.cell_size as f64).min(lvl.grid.height as f64 - 1.0).max(0.0) as usize; if lvl.grid.cells[x][y] { if self.bounces == 0 { return Dead } self.vel *= -0.25; self.pos += self.vel; self.bounces -= 1; use rand::distributions::{Distribution, Normal}; let mut rng = rand::thread_rng(); let a = Radians(self.vel.to_radians().0 + Normal::new(0.0, 0.75).sample(&mut rng)); objects.push(Box::new(Boll { vel: Point2D::from(a) * Normal::new(1.0, 0.25).sample(&mut rng) * self.vel.length(), ..*self })); } Alive } fn render(&self, renderer: &mut Renderer, _sprites: &SpriteManager) { let block = _sprites.get("block"); let size = 4 + self.bounces * 6; renderer.blit(block, None, Rect::new(self.pos.x as i32 - size as i32 / 2, self.pos.y as i32 - size as i32 / 2, size as u32, size as u32)); // renderer.canvas().set_draw_color((0, self.bounces * 100, 255)); // renderer.canvas().draw_point((self.pos.x as i32, self.pos.y as i32)).unwrap(); } }