X-Git-Url: http://dolda2000.com/gitweb/?a=blobdiff_plain;f=src%2Fcore%2Flevel%2Fmod.rs;h=47a4703e8904f65315d8fe76c6b971237ab13289;hb=d67471eea7777938ffe9fb82ac2e060133b655d9;hp=ac13e4ebb090468699cb636a457a79df75f8fe00;hpb=d01df1fc6e3bfafd385b2533e6155ddd8714fcfb;p=kaka%2Frust-sdl-test.git diff --git a/src/core/level/mod.rs b/src/core/level/mod.rs index ac13e4e..47a4703 100644 --- a/src/core/level/mod.rs +++ b/src/core/level/mod.rs @@ -1,5 +1,5 @@ -use common::{Point, Dimension, Intersection, supercover_line}; use core::render::Renderer; +use geometry::{Point, Dimension, Intersection, Angle, ToAngle, supercover_line}; use sprites::SpriteManager; use std::rc::Rc; use {point, dimen}; @@ -19,14 +19,14 @@ pub struct Level { } impl Level { - pub fn new(gravity: Point, grid: Grid, mut walls: Vec>) -> Self { + pub fn new(gravity: Point, grid: Grid, mut walls: Vec) -> Self { let size = (2560, 1440); // TODO: get actual size from walls or something let wall_grid = Level::build_wall_grid(&mut walls, &size.into()); - dbg!(&wall_grid.cell_size); + dbg!(&wall_grid.scale); Level { gravity, grid, - walls, + walls: walls.into_iter().map(|i| Rc::new(i)).collect(), wall_grid, } } @@ -35,11 +35,11 @@ impl Level { fn build_wall_grid(walls: &mut Vec, lvlsize: &Dimension) -> Grid>> { let size = dimen!(lvlsize.width / 20, lvlsize.height / 20); // TODO: make sure all walls fit within the grid bounds let cs = point!(lvlsize.width / size.width, lvlsize.height / size.height); - //let cs = point!(cell_size.width as f64, cell_size.height as f64); + //let cs = point!(scale.width as f64, scale.height as f64); let mut grid = Grid { cells: vec!(vec!(vec!(); size.height); size.width), size, - cell_size: dimen!(cs.x, cs.y), + scale: dimen!(cs.x as f64, cs.y as f64), }; for wall in walls { @@ -53,35 +53,50 @@ impl Level { grid } - pub fn render(&mut self, renderer: &mut Renderer, _sprites: &SpriteManager) { - // original grid - renderer.canvas().set_draw_color((64, 64, 64)); - let size = &self.grid.cell_size; - for x in 0..self.grid.size.width { - for y in 0..self.grid.size.height { - if self.grid.cells[x][y] { - renderer.canvas().fill_rect(sdl2::rect::Rect::new( - x as i32 * size.width as i32, - y as i32 * size.height as i32, - size.width as u32, - size.height as u32)).unwrap(); + pub fn render(&mut self, renderer: &mut Renderer, _sprites: &SpriteManager, debug_mode: bool) { + if debug_mode { + // original grid + renderer.canvas().set_draw_color((64, 64, 64)); + let size = &self.grid.scale; + for x in 0..self.grid.size.width { + for y in 0..self.grid.size.height { + if self.grid.cells[x][y] { + renderer.canvas().fill_rect(sdl2::rect::Rect::new( + x as i32 * size.width as i32, + y as i32 * size.height as i32, + size.width as u32, + size.height as u32)).unwrap(); + } } } - } - // wall grid - renderer.canvas().set_draw_color((0, 32, 0)); - let size = &self.wall_grid.cell_size; - for x in 0..self.wall_grid.size.width { - for y in 0..self.wall_grid.size.height { - if !self.wall_grid.cells[x][y].is_empty() { - let num = self.wall_grid.cells[x][y].len(); - renderer.canvas().set_draw_color((0, 32*num as u8, 0)); - renderer.canvas().fill_rect(sdl2::rect::Rect::new( - x as i32 * size.width as i32, - y as i32 * size.height as i32, - size.width as u32, - size.height as u32)).unwrap(); + // wall grid + renderer.canvas().set_draw_color((0, 32, 0)); + let size = &self.wall_grid.scale; + for x in 0..self.wall_grid.size.width { + for y in 0..self.wall_grid.size.height { + if !self.wall_grid.cells[x][y].is_empty() { + let num = self.wall_grid.cells[x][y].len(); + renderer.canvas().set_draw_color((0, 32*num as u8, 0)); + renderer.canvas().fill_rect(sdl2::rect::Rect::new( + x as i32 * size.width as i32, + y as i32 * size.height as i32, + size.width as u32, + size.height as u32)).unwrap(); + } + } + } + + // wall normals + for wall in &self.walls { + for e in &wall.edges { + let c = (e.p1 + e.p2) / 2.0; + let a = (e.p2 - e.p1).to_angle() + std::f64::consts::FRAC_PI_2.radians(); + + renderer.draw_line( + <(i32, i32)>::from(c.to_i32()), + <(i32, i32)>::from((c + Point::from(a) * 10.0).to_i32()), + (0, 128, 255)); } } } @@ -89,6 +104,25 @@ impl Level { // walls for wall in &self.walls { for e in &wall.edges { + if !debug_mode { + let c = (e.p1 + e.p2) / 2.0; + let a = e.normal().reverse(); + + renderer.draw_line( + <(i32, i32)>::from(c.to_i32()), + <(i32, i32)>::from((c + Point::from(a) * 10.0).to_i32()), + (255, 128, 0)); + + renderer.draw_line( + <(i32, i32)>::from(e.p1.to_i32()), + <(i32, i32)>::from((c + Point::from(a) * 20.0).to_i32()), + (96, 48, 0)); + renderer.draw_line( + <(i32, i32)>::from(e.p2.to_i32()), + <(i32, i32)>::from((c + Point::from(a) * 20.0).to_i32()), + (96, 48, 0)); + } + renderer.draw_line( <(i32, i32)>::from(e.p1.to_i32()), <(i32, i32)>::from(e.p2.to_i32()), @@ -99,12 +133,12 @@ impl Level { pub fn intersect_walls(&self, p1: Point, p2: Point) -> IntersectResult { for c in self.wall_grid.grid_coordinates_on_line(p1, p2) { - if let walls = &self.wall_grid.cells[c.x][c.y] { - for w in walls { - if let Intersection::Point(p) = Intersection::lines(p1, p2, w.p1, w.p2) { + for w in &self.wall_grid.cells[c.x][c.y] { + if let Intersection::Point(p) = Intersection::lines(p1, p2, w.p1, w.p2) { + if w.point_is_in_front(p1) { let wall = Wall { - region: &self.walls[w.region], - edge: w, + region: Rc::clone(&self.walls[w.region]), + edge: Rc::clone(w), }; return IntersectResult::Intersection(wall, p) } @@ -115,8 +149,8 @@ impl Level { } } -pub enum IntersectResult<'a> { - Intersection(Wall<'a>, Point), +pub enum IntersectResult { + Intersection(Wall, Point), None } @@ -125,21 +159,21 @@ pub enum IntersectResult<'a> { #[derive(Debug, Default)] pub struct Grid { pub size: Dimension, - pub cell_size: Dimension, + pub scale: Dimension, pub cells: Vec>, } impl Grid { - pub fn at(&self, c: C) -> Option<&T> - where C: Into<(isize, isize)> - { - let c = c.into(); - if c.0 >= 0 && c.0 < self.size.width as isize && c.1 >= 0 && c.1 < self.size.height as isize { - Some(&self.cells[c.0 as usize][c.1 as usize]) - } else { - None - } - } + // pub fn at(&self, c: C) -> Option<&T> + // where C: Into<(isize, isize)> + // { + // let c = c.into(); + // if c.0 >= 0 && c.0 < self.size.width as isize && c.1 >= 0 && c.1 < self.size.height as isize { + // Some(&self.cells[c.0 as usize][c.1 as usize]) + // } else { + // None + // } + // } pub fn to_grid_coordinate(&self, c: C) -> Option> where C: Into<(isize, isize)> @@ -154,8 +188,7 @@ impl Grid { /// Returns a list of grid coordinates that a line in world coordinates passes through. pub fn grid_coordinates_on_line(&self, p1: Point, p2: Point) -> Vec> { - let scale = (self.cell_size.width as f64, self.cell_size.height as f64); - supercover_line(p1 / scale, p2 / scale) + supercover_line(p1 / self.scale, p2 / self.scale) .iter() .map(|c| self.to_grid_coordinate(*c)) .flatten() @@ -165,14 +198,13 @@ impl Grid { ////////// WALL REGION ///////////////////////////////////////////////////////// -#[derive(Debug)] +#[derive(Debug, Default)] pub struct WallRegion { edges: Vec>, } impl WallRegion { - pub fn new(points: Vec>) -> Self { - let index: RegionIndex = 0; // use as param + pub fn new(index: RegionIndex, points: Vec>) -> Self { let mut edges = Vec::with_capacity(points.len()); for i in 0..points.len() { @@ -188,17 +220,15 @@ impl WallRegion { WallRegion { edges } } - // #[allow(dead_code)] - // fn next(&self, index: EdgeIndex) -> Rc { - // let index = (index + 1) % self.edges.len(); - // Rc::clone(&self.edges[index]) - // } + fn next(&self, index: EdgeIndex) -> Rc { + let index = (index + 1) % self.edges.len(); + self.edges[index].clone() + } - // #[allow(dead_code)] - // fn previous(&self, index: EdgeIndex) -> Rc { - // let index = (index + self.edges.len() + 1) % self.edges.len(); - // Rc::clone(&self.edges[index]) - // } + fn previous(&self, index: EdgeIndex) -> Rc { + let index = (index + self.edges.len() - 1) % self.edges.len(); + self.edges[index].clone() + } } ////////// WALL EDGE /////////////////////////////////////////////////////////// @@ -214,31 +244,73 @@ struct WallEdge { pub p2: Point, } +impl WallEdge { + fn point_is_in_front(&self, p: Point) -> bool { + let cross = (self.p2 - self.p1).cross_product(p - self.p1); + cross > 0.0 + } + + fn normal(&self) -> Angle { + self.angle() + std::f64::consts::FRAC_PI_2.radians() + } + + /// Angle from the right to the left point if the normal is up. + fn angle(&self) -> Angle { + (self.p2 - self.p1).to_angle() + } +} + ////////// WALL //////////////////////////////////////////////////////////////// -/// kommer det här att fungera ifall nåt objekt ska spara en referens till Wall? -/// kanske istället ska lägga Vec i en Rc och skicka med en klon av den, samt id:n till regionen och väggen? -pub struct Wall<'a> { - region: &'a WallRegion, - edge: &'a WallEdge, +pub struct Wall { + region: Rc, + edge: Rc, } -impl<'a> Wall<'a> { - pub fn next(&self) -> Wall<'a> { - let next = (self.edge.id + 1) % self.region.edges.len(); - let edge = &self.region.edges[next]; +impl Wall { + #[allow(dead_code)] + pub fn next(&self) -> Wall { Wall { - region: self.region, - edge, + edge: self.region.next(self.edge.id), + region: self.region.clone(), } } - pub fn previous(&self) -> Wall<'a> { - let prev = (self.edge.id + self.region.edges.len() - 1) % self.region.edges.len(); - let edge = &self.region.edges[prev]; + #[allow(dead_code)] + pub fn previous(&self) -> Wall { Wall { - region: self.region, - edge, + edge: self.region.previous(self.edge.id), + region: self.region.clone(), } } + + pub fn normal(&self) -> Angle { + self.edge.normal() + } + + pub fn angle(&self) -> Angle { + self.edge.angle() + } + + pub fn from_2d(&self, pos: &Point, vel: &Point) -> (f64, f64) { + let pos = self.projection_of(*pos - self.edge.p1); + let vel = self.projection_of(*vel); + (pos, vel) + } + + pub fn to_2d(&self, pos: f64, vel: f64) -> (Point, Point) { + let a = Point::from(self.edge.angle()); + let pos = self.edge.p1 + a * pos; + let vel = a * vel; + (pos, vel) + } + + /// Returns the 1D position of a point projected onto this wall. + /// This is done by rotating the point using a rotation matrix and then taking the resulting x value. + /// x'=xcos−ysin <- only this is used + /// y'=xsin+ycos + fn projection_of(&self, p: Point) -> f64 { + let r = Point::from(self.edge.angle()); + p.x * r.x + p.y * r.y // r.y is inverted here instead of inverting the angle + } }