X-Git-Url: http://dolda2000.com/gitweb/?p=kokare.git;a=blobdiff_plain;f=kokare.c;h=f7033d8d29b16e6067445fa70ca1436a5dce9089;hp=5393c8b36c9b5a7295b13caa4883ffbaaff5879e;hb=HEAD;hpb=2378926d31620cdc3e335f600c2af43f2358143b diff --git a/kokare.c b/kokare.c index 5393c8b..f7033d8 100644 --- a/kokare.c +++ b/kokare.c @@ -1,6 +1,8 @@ #include #include +#include #include +#include #define SEGA 4 #define SEGB 2 @@ -34,37 +36,51 @@ uint8_t dsp[2] = {0, 0}; char leda = 0; char ledc = 0; /* Timer */ -char of = 0; -int oticks = 0; +volatile int oticks = 0; unsigned long mnow; /* Pulse counter */ -char pstate = 0; +volatile char pstate = 0; char pval = 0; /* Switch */ -char sstate = 0; +volatile char sstate = 0; int stime = 0; /* Temp sensor */ -char tstate = 0; -char tlock = 0; +volatile char tstate = 0; +volatile char tlock = 0; unsigned long tstart; unsigned long ttime; unsigned long ttimea = 10000; char tavgok = 0; +/* Conversion loop */ +int tempk; +volatile ktok = 0; /* Zero-cross detector*/ -char zok = 0; -unsigned long ztime; +volatile char zok = 0; +volatile char ztime = 0; /* Triac */ char trstate = 0; char tron = 0; -unsigned long trtime; -unsigned short trdelay = 0; +volatile char trtime; +volatile char trdelay = 0; void init(void) { - /* Timer init */ + /* Timer init + * Timer 0 cycles the Triac + * Timer 1 is used for global timing + * Timer 2 cycles the LED display + */ + OCR0A = 100; + TCCR0A = 2; + TCCR0B = 1; + TIMSK0 = 2; TCCR1A = 0; TCCR1B = 1; TIMSK1 = 1; + OCR2A = 16; + TCCR2A = 2; + TCCR2B = 4; + TIMSK2 = 2; /* * B0..2 = Pulse sensor @@ -120,10 +136,10 @@ unsigned char bindisp(unsigned char num) return(ret); } -void display(char num) +void display(char num, char d0, char d1) { - dsp[0] = font[(num / 10) % 10]; - dsp[1] = font[num % 10]; + dsp[0] = font[(num / 10) % 10] | (d0?SEGP:0); + dsp[1] = font[num % 10] | (d1?SEGP:0); } void disphex(unsigned char num) @@ -134,49 +150,58 @@ void disphex(unsigned char num) unsigned long getticks(void) { - return(TCNT1 + (((unsigned long)oticks) << 16)); + uint16_t v; + unsigned long r; + + cli(); + v = TCNT1; + r = v + (((unsigned long)oticks) << 16); + if((TIFR1 & 0x01) && !(v & 0x8000)) + r += 0x10000; + sei(); + return(r); } void ledcycle(void) { - static uint16_t last = 0; uint8_t c, d, v; - if(TCNT1 - last > 500) { - last = TCNT1; - if(++leda >= 8) { - leda = 0; - if(++ledc >= 2) - ledc = 0; - } - if(dsp[ledc] & (1 << leda)) { - if(leda < 6) { - c = 1 << leda; - d = 0; - } else { - c = 0; - d = 0x10 << (leda - 6); - } - d |= ledc?0x40:0x80; + if(++leda >= 8) { + leda = 0; + if(++ledc >= 2) + ledc = 0; + } + if(dsp[ledc] & (1 << leda)) { + if(leda < 6) { + c = 1 << leda; + d = 0; } else { - c = d = 0; + c = 0; + d = 0x10 << (leda - 6); } - PORTC = c; - PORTD = (PORTD & 0x0f) | d; + d |= ledc?0x40:0x80; + } else { + c = d = 0; } + PORTC = c; + PORTD = (PORTD & 0x0f) | d; } void tempcycle(void) { if(tstate == 0) { if((PIND & 8) && (tlock == 0)) { + cli(); PORTD |= 2; + sei(); tstart = mnow; tstate = 1; } } else if(tstate == 1) { if(mnow - tstart > 1000) { + cli(); PORTD &= ~2; + sei(); tstate = 0; tstart = mnow; } @@ -193,40 +218,83 @@ void calcavg(void) } } -void triaccycle(void) +void convcycle(void) { - if(trstate == 0) { - if(tron && zok && (mnow > ztime + trdelay)) { - PORTD |= 1; - zok = 0; - trstate = 1; - trtime = mnow; - } - } else if(trstate == 1) { - if(mnow > trtime + 500) { - PORTD &= ~1; - trstate = 0; + static char state = 0; + static unsigned long last = 0; + static float a, ra, l, t; + + /* + * Theoretically: + * t = RC * ln(2) => R = t / (C * ln(2)) + * R = A * exp(B / T) => T = B / ln(R / A) + * T = B / ln(t / (A * C * ln(2))) + * Where: + * t = The measured time (s) + * R = The resistance of the thermistor (Ohm) + * C = The capacitance of the capacitor (F) + * T = The temperature (K) + * A, B are the thermistor-specific constants + * + * In the following code: + * a = ttimea as float + * C = 1e-6 / (A * C * ln(2)) + * ra = a * C + * l = ln(ra) + * t = B / l + * Note, temperature is in Kelvin + */ +#define C 10.819112 /* A is 0.1333469 */ +#define B 4020.0 + if(state == 0) { + if((mnow - last > 200000) && tavgok) { + a = (float)ttimea; + state = 1; + tavgok = 0; + last = mnow; } + } else if(state == 1) { + ra = a * C; + state = 2; + } else if(state == 2) { + l = log(ra); + state = 3; + } else if(state == 3) { + t = B / l; + state = 4; + } else if(state == 4) { + tempk = (int)t; + ktok = 1; + state = 0; } } int main(void) { - int state, cur; + int state, cur, run, rstate, delta; unsigned long utime; - state = 0; - cur = 99; + state = 1; + cur = eeprom_read_byte(0); + if(cur < 0) + cur = 0; + if(cur > 100) + cur = 100; + run = 0; + rstate = 0; + utime = getticks(); init(); sei(); - display(0); + if(cur < 100) + display(cur, 0, 0); + else + dsp[0] = dsp[1] = SEGG; while(1) { mnow = getticks(); - ledcycle(); tempcycle(); calcavg(); - triaccycle(); + convcycle(); #if 1 /* @@ -234,41 +302,88 @@ int main(void) */ if(state == 0) { /* Display temperature */ - if(tavgok) { - tavgok = 0; - if(ttimea < 20000) { - display((ttimea / 100) % 100); - dsp[0] |= SEGP; - if(ttimea >= 10000) - dsp[1] |= SEGP; + if(ktok) { + ktok = 0; + if((tempk >= 273) && (tempk <= 372)) { + display(tempk - 273, 0, run); } else { - display(ttimea / 1000); + dsp[0] = SEGG; + dsp[1] = SEGG | (run?SEGP:0); } } - if(pval != 0) { + if(pval != 0) state = 1; - utime = mnow; + if(sstate == 2) { + sstate = 0; + if(stime > 10) + state = 2; + else + run = !run; } } else if(state == 1) { - /* Triac control */ + /* Temp setting */ if(pval != 0) { cur += pval; pval = 0; if(cur < 0) cur = 0; - if(cur > 99) - cur = 99; - display(cur); - trdelay = 10000 - ((unsigned short)cur * 100); + if(cur > 100) + cur = 100; utime = mnow; } - if(mnow - utime > 1000000) { + if(mnow - utime > 2000000) { + state = 0; + eeprom_write_byte(0, cur); + } + if(sstate == 2) { + run = !run; + sstate = 0; + } + if(cur < 100) { + display(cur, 0, run); + } else { + dsp[0] = SEGG; + dsp[1] = SEGG | (run?SEGP:0); + } + } else if(state == 2) { + /* Display raw temp time reading */ + if(ttimea < 20000) { + display((ttimea / 100) % 100, 1, ttimea >= 10000); + } else { + display(ttimea / 1000, 0, 0); + } + if(sstate == 2) { state = 0; + sstate = 0; } } - if(sstate == 2) { - tron = !tron; - sstate = 0; + /* + * Set Triac to match temperature + */ + if(run) { + delta = cur - (tempk - 273); + if(rstate == 0) { + if(delta > 0) { + tron = 1; + if(delta > 8) { + /* For some reason, the Triac currently doesn't + * trigger on one of the AC half-cycles below 0.7 + * ms. */ + trdelay = 7; + } else { + trdelay = 75 - (delta * 5); + } + } else { + tron = 0; + rstate = 1; + } + } else if(rstate == 1) { + tron = 0; + if(delta >= 2) + rstate = 0; + } + } else { + tron = 0; } #endif /* @@ -313,13 +428,17 @@ int main(void) if(cur > 99) cur = 99; display(cur); - trdelay = 10000 - ((unsigned short)cur * 100); + trdelay = 99 - cur; pval = 0; } if(sstate == 2) { tron = !tron; sstate = 0; } + if(tron) + dsp[1] |= SEGP; + else + dsp[1] &= ~SEGP; #endif #if 0 /* @@ -341,13 +460,15 @@ int main(void) } else { display(cur); } + if(PINB & 4) + dsp[1] |= SEGP; #endif } } ISR(SIG_INTERRUPT0) { - ztime = getticks(); + ztime = 0; zok = 1; } @@ -366,19 +487,41 @@ ISR(SIG_INTERRUPT1) } } +ISR(SIG_OUTPUT_COMPARE0A) +{ + if(trstate == 0) { + ztime++; + if(tron && (ztime >= trdelay)) { + PORTD |= 1; + trstate = 1; + trtime = 0; + } + } else if(trstate == 1) { + trtime++; + if(trtime >= 5) { + PORTD &= ~1; + trstate = 0; + } + } +} + +ISR(SIG_OUTPUT_COMPARE2A) +{ + ledcycle(); +} + ISR(SIG_OVERFLOW1) { - of = 1; oticks++; } ISR(SIG_PIN_CHANGE0) { - if((sstate == 0) & ((PINB & 4) == 0)) { + if((sstate == 0) && !(PINB & 4)) { stime = oticks; sstate = 1; } - if((sstate == 1) & ((PINB & 4) == 1)) { + if((sstate == 1) && (PINB & 4)) { stime = oticks - stime; sstate = 2; }