More intelligent Triac setting.
[kokare.git] / kokare.c
... / ...
CommitLineData
1#include <avr/io.h>
2#include <avr/interrupt.h>
3#include <inttypes.h>
4#include <math.h>
5
6#define SEGA 4
7#define SEGB 2
8#define SEGC 1
9#define SEGD 32
10#define SEGE 64
11#define SEGF 16
12#define SEGG 8
13#define SEGP 128
14
15uint8_t font[16] = {
16 SEGA | SEGB | SEGC | SEGD | SEGE | SEGF,
17 SEGB | SEGC,
18 SEGA | SEGB | SEGD | SEGE | SEGG,
19 SEGA | SEGB | SEGC | SEGD | SEGG,
20 SEGB | SEGC | SEGF | SEGG,
21 SEGA | SEGC | SEGD | SEGF | SEGG,
22 SEGA | SEGC | SEGD | SEGE | SEGF | SEGG,
23 SEGA | SEGB | SEGC,
24 SEGA | SEGB | SEGC | SEGD | SEGE | SEGF | SEGG,
25 SEGA | SEGB | SEGC | SEGD | SEGF | SEGG,
26 SEGA | SEGB | SEGC | SEGE | SEGF | SEGG,
27 SEGC | SEGD | SEGE | SEGF | SEGG,
28 SEGA | SEGD | SEGE | SEGF,
29 SEGB | SEGC | SEGD | SEGE | SEGG,
30 SEGA | SEGD | SEGE | SEGF | SEGG,
31 SEGA | SEGE | SEGF | SEGG,
32};
33/* LED */
34uint8_t dsp[2] = {0, 0};
35char leda = 0;
36char ledc = 0;
37/* Timer */
38volatile int oticks = 0;
39unsigned long mnow;
40/* Pulse counter */
41volatile char pstate = 0;
42char pval = 0;
43/* Switch */
44volatile char sstate = 0;
45int stime = 0;
46/* Temp sensor */
47volatile char tstate = 0;
48volatile char tlock = 0;
49unsigned long tstart;
50unsigned long ttime;
51unsigned long ttimea = 10000;
52char tavgok = 0;
53/* Conversion loop */
54int tempk;
55volatile ktok = 0;
56/* Zero-cross detector*/
57volatile char zok = 0;
58volatile char ztime = 0;
59/* Triac */
60char trstate = 0;
61char tron = 0;
62volatile char trtime;
63volatile char trdelay = 0;
64
65void init(void)
66{
67 /* Timer init
68 * Timer 0 cycles the Triac
69 * Timer 1 is used for global timing
70 * Timer 2 cycles the LED display
71 */
72 OCR0A = 100;
73 TCCR0A = 2;
74 TCCR0B = 1;
75 TIMSK0 = 2;
76 TCCR1A = 0;
77 TCCR1B = 1;
78 TIMSK1 = 1;
79 OCR2A = 16;
80 TCCR2A = 2;
81 TCCR2B = 4;
82 TIMSK2 = 2;
83
84 /*
85 * B0..2 = Pulse sensor
86 * B3..5 = ISP
87 * B6..7 = CLK
88 */
89 DDRB = 0x38;
90 PORTB = 0x07;
91 PCMSK0 = 0x07;
92 PCICR = 0x01;
93 /*
94 * C0..5 = LEDA0..5
95 * C6 = /RESET
96 * C7 = NC
97 */
98 DDRC = 0x3f;
99 PORTC = 0x00;
100 /*
101 * D0 = Triac
102 * D1 = NTC FET
103 * D2 = ZCD (INT0)
104 * D3 = NTC Op-amp (INT1)
105 * D4..5 = LEDA6..7
106 * D6..7 = LEDC0..1
107 */
108 DDRD = 0xf3;
109 PORTD = 0x00;
110 EICRA = 0x0d;
111 EIMSK = 0x03;
112}
113
114unsigned char bindisp(unsigned char num)
115{
116 unsigned char ret;
117
118 ret = 0;
119 if(num & 1)
120 ret |= SEGA;
121 if(num & 2)
122 ret |= SEGB;
123 if(num & 4)
124 ret |= SEGC;
125 if(num & 8)
126 ret |= SEGD;
127 if(num & 16)
128 ret |= SEGE;
129 if(num & 32)
130 ret |= SEGF;
131 if(num & 64)
132 ret |= SEGG;
133 if(num & 128)
134 ret |= SEGP;
135 return(ret);
136}
137
138void display(char num)
139{
140 dsp[0] = font[(num / 10) % 10];
141 dsp[1] = font[num % 10];
142}
143
144void disphex(unsigned char num)
145{
146 dsp[0] = font[(num & 0xf0) >> 4];
147 dsp[1] = font[num & 0x0f];
148}
149
150unsigned long getticks(void)
151{
152 uint16_t v;
153 unsigned long r;
154
155 cli();
156 v = TCNT1;
157 r = v + (((unsigned long)oticks) << 16);
158 if((TIFR1 & 0x01) && !(v & 0x8000))
159 r += 0x10000;
160 sei();
161 return(r);
162}
163
164void ledcycle(void)
165{
166 uint8_t c, d, v;
167
168 if(++leda >= 8) {
169 leda = 0;
170 if(++ledc >= 2)
171 ledc = 0;
172 }
173 if(dsp[ledc] & (1 << leda)) {
174 if(leda < 6) {
175 c = 1 << leda;
176 d = 0;
177 } else {
178 c = 0;
179 d = 0x10 << (leda - 6);
180 }
181 d |= ledc?0x40:0x80;
182 } else {
183 c = d = 0;
184 }
185 PORTC = c;
186 PORTD = (PORTD & 0x0f) | d;
187}
188
189void tempcycle(void)
190{
191 if(tstate == 0) {
192 if((PIND & 8) && (tlock == 0)) {
193 cli();
194 PORTD |= 2;
195 sei();
196 tstart = mnow;
197 tstate = 1;
198 }
199 } else if(tstate == 1) {
200 if(mnow - tstart > 1000) {
201 cli();
202 PORTD &= ~2;
203 sei();
204 tstate = 0;
205 tstart = mnow;
206 }
207 }
208}
209
210void calcavg(void)
211{
212 if(tlock == 1) {
213 tlock = 2;
214 ttimea = ((ttimea * 15) + ttime) >> 4;
215 tlock = 0;
216 tavgok = 1;
217 }
218}
219
220void convcycle(void)
221{
222 static char state = 0;
223 static unsigned long last = 0;
224 static float a, ra, l, t;
225
226 /*
227 * Theoretically:
228 * t = RC * ln(2) => R = t / (C * ln(2))
229 * R = A * exp(B / T) => T = B / ln(R / A)
230 * T = B / ln(R / (A * C * ln(2)))
231 * In the following:
232 * a = ttimea as float
233 * C = 1e6 / (A * C * ln(2))
234 * ra = a * C
235 * l = ln(ra)
236 * t = B / l
237 * Note, temperature is in Kelvin
238 */
239#define C 9.792934
240#define B 4020.0
241 if(state == 0) {
242 if((mnow - last > 200000) && tavgok) {
243 a = (float)ttimea;
244 state = 1;
245 tavgok = 0;
246 last = mnow;
247 }
248 } else if(state == 1) {
249 ra = a * C;
250 state = 2;
251 } else if(state == 2) {
252 l = log(ra);
253 state = 3;
254 } else if(state == 3) {
255 t = B / l;
256 state = 4;
257 } else if(state == 4) {
258 tempk = (int)t;
259 ktok = 1;
260 state = 0;
261 }
262}
263
264int main(void)
265{
266 int state, cur, run, rstate, delta;
267 unsigned long utime;
268
269 state = 0;
270 cur = 100;
271 run = 0;
272 rstate = 0;
273 init();
274 sei();
275 display(0);
276
277 while(1) {
278 mnow = getticks();
279 tempcycle();
280 calcavg();
281 convcycle();
282
283#if 1
284 /*
285 * User interface
286 */
287 if(state == 0) {
288 /* Display temperature */
289 if(ktok) {
290 ktok = 0;
291 if((tempk >= 273) && (tempk <= 372)) {
292 display(tempk - 273);
293 } else {
294 dsp[0] = dsp[1] = SEGG;
295 }
296 }
297 if(pval != 0)
298 state = 1;
299 if(sstate == 2) {
300 sstate = 0;
301 if(stime > 10)
302 state = 2;
303 else
304 run = !run;
305 }
306 if(run)
307 dsp[1] |= SEGP;
308 else
309 dsp[1] &= ~SEGP;
310 } else if(state == 1) {
311 /* Temp setting */
312 if(pval != 0) {
313 cur += pval;
314 pval = 0;
315 if(cur < 0)
316 cur = 0;
317 if(cur > 100)
318 cur = 100;
319 if(cur < 100)
320 display(cur);
321 else
322 dsp[0] = dsp[1] = SEGG;
323 utime = mnow;
324 }
325 if(mnow - utime > 1000000)
326 state = 0;
327 if(sstate == 2) {
328 run = !run;
329 sstate = 0;
330 }
331 } else if(state == 2) {
332 /* Display raw temp time reading */
333 if(ttimea < 20000) {
334 display((ttimea / 100) % 100);
335 dsp[0] |= SEGP;
336 if(ttimea >= 10000)
337 dsp[1] |= SEGP;
338 } else {
339 display(ttimea / 1000);
340 }
341 if(sstate == 2) {
342 state = 0;
343 sstate = 0;
344 }
345 }
346 /*
347 * Set Triac to match temperature
348 */
349 if(run) {
350 delta = cur - (tempk - 273);
351 if(rstate == 0) {
352 if(delta > 0) {
353 tron = 1;
354 if(delta > 8) {
355 /* For some reason, the Triac currently doesn't
356 * trigger on one of the AC half-cycles below 0.7
357 * ms. */
358 trdelay = 7;
359 } else {
360 trdelay = 79 - (delta * 9);
361 }
362 } else {
363 tron = 0;
364 rstate = 1;
365 }
366 } else if(rstate == 1) {
367 tron = 0;
368 if(delta >= 2)
369 rstate = 0;
370 }
371 } else {
372 tron = 0;
373 }
374#endif
375 /*
376 dsp[0] = bindisp((ttimea & 0xff00) >> 8);
377 dsp[1] = bindisp(ttimea & 0x00ff);
378 */
379 /*
380 disphex((ttimea & 0xff000) >> 12);
381 */
382#if 0
383 /*
384 Temp display
385 */
386 if(ttimea < 20000) {
387 display((ttimea / 100) % 100);
388 dsp[0] |= SEGP;
389 if(ttimea >= 10000)
390 dsp[1] |= SEGP;
391 } else {
392 display(ttimea / 1000);
393 }
394#endif
395#if 0
396 /*
397 * ZVD debug
398 */
399 if(zok) {
400 if(++cur > 99)
401 cur = 0;
402 display(cur);
403 zok = 0;
404 }
405#endif
406#if 0
407 /*
408 Phony Triac control
409 */
410 if(pval != 0) {
411 cur += pval;
412 if(cur < 0)
413 cur = 0;
414 if(cur > 99)
415 cur = 99;
416 display(cur);
417 trdelay = 99 - cur;
418 pval = 0;
419 }
420 if(sstate == 2) {
421 tron = !tron;
422 sstate = 0;
423 }
424 if(tron)
425 dsp[1] |= SEGP;
426 else
427 dsp[1] &= ~SEGP;
428#endif
429#if 0
430 /*
431 Pulse counter display
432 */
433 cur += pval;
434 pval = 0;
435 if(sstate == 2) {
436 cur = stime;
437 sstate = 0;
438 }
439 if(cur > 99)
440 cur = 99;
441 if(cur < -99)
442 cur = -99;
443 if(cur < 0) {
444 display(-cur);
445 dsp[0] |= SEGP;
446 } else {
447 display(cur);
448 }
449 if(PINB & 4)
450 dsp[1] |= SEGP;
451#endif
452 }
453}
454
455ISR(SIG_INTERRUPT0)
456{
457 ztime = 0;
458 zok = 1;
459}
460
461ISR(SIG_INTERRUPT1)
462{
463 unsigned long now;
464
465 now = getticks();
466 if(tstate == 0) {
467 tstate = 1;
468 if(tlock != 2)
469 ttime = now - tstart;
470 tstart = now;
471 PORTD |= 2;
472 tlock = 1;
473 }
474}
475
476ISR(SIG_OUTPUT_COMPARE0A)
477{
478 if(trstate == 0) {
479 ztime++;
480 if(tron && (ztime >= trdelay)) {
481 PORTD |= 1;
482 trstate = 1;
483 trtime = 0;
484 }
485 } else if(trstate == 1) {
486 trtime++;
487 if(trtime >= 5) {
488 PORTD &= ~1;
489 trstate = 0;
490 }
491 }
492}
493
494ISR(SIG_OUTPUT_COMPARE2A)
495{
496 ledcycle();
497}
498
499ISR(SIG_OVERFLOW1)
500{
501 oticks++;
502}
503
504ISR(SIG_PIN_CHANGE0)
505{
506 if((sstate == 0) && !(PINB & 4)) {
507 stime = oticks;
508 sstate = 1;
509 }
510 if((sstate == 1) && (PINB & 4)) {
511 stime = oticks - stime;
512 sstate = 2;
513 }
514 if(pstate == 0) {
515 if((PINB & 2) == 0) {
516 pstate = 1;
517 } else if((PINB & 1) == 0) {
518 pstate = 2;
519 }
520 } else if(pstate == 1) {
521 if((PINB & 1) == 0) {
522 pval++;
523 pstate = 3;
524 } else {
525 pstate = 0;
526 }
527 } else if(pstate == 2) {
528 if((PINB & 2) == 0) {
529 pval--;
530 pstate = 3;
531 } else {
532 pstate = 0;
533 }
534 } else {
535 if((PINB & 2) && (PINB & 1))
536 pstate = 0;
537 }
538}